A Comparison of Sample-based Stochastic Optimal Control Methods
نویسندگان
چکیده
In this paper, we compare the performance of two scenario-based numerical methods to solve stochastic optimal control problems: scenario trees and particles. The problem consists in finding strategies to control a dynamical system perturbed by exogenous noises so as to minimize some expected cost along a discrete and finite time horizon. We introduce the Mean Squared Error (MSE) which is the expected L2-distance between the strategy given by the algorithm and the optimal strategy, as a performance indicator for the two models. We study the behaviour of the MSE with respect to the number of scenarios used for discretization. The first model, widely studied in the Stochastic Programming community, consists in approximating the noise diffusion using a scenario tree representation. On a numerical example, we observe that the number of scenarios needed to obtain a given precision grows exponentially with the time horizon. In that sense, our conclusion on scenario trees is equivalent to the one in the work by Shapiro (2006) and has been widely noticed by practitioners. However, in the second part, we show using the same example that, by mixing Stochastic Programming and Dynamic Programming ideas, the particle method described by Carpentier et al. (2009) copes with this numerical difficulty: the number of scenarios needed to obtain a given precision now does not depend on the time horizon. Unfortunately, we also observe that serious obstacles still arise from the system state space dimension.
منابع مشابه
Application of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کاملDynamical Control of Computations Using the Family of Optimal Two-point Methods to Solve Nonlinear Equations
One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration, and to use a proper termination criterion which is able to obtain a high accuracy for the numerical solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a new scheme based on the stochastic arithmetic to find the optimal number of iterations in...
متن کاملStochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry
We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...
متن کاملAn Application of the Stochastic Optimal Control Algorithm (OPTCON) to the Public Sector Economy of Iran
In this paper we first describe the stochastic optimal control algorithm called ((OPTCON)). The algorithm minimizes an intertemporal objective loss function subject to a nonlinear dynamic system in order to achieve optimal value of control (or instrument) variables. Second as an application, we implemented the algorithm by the statistical programming system ((GAUSS)) to determine the optimal fi...
متن کاملA two-stage stochastic rule-based model to determine pre-assembly buffer content
This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints. First stage of the model decide...
متن کاملOperating Room Scheduling in Teaching Hospitals: A Novel Stochastic Optimization Model
Background and Objectives: Operating room (OR) scheduling is key to optimal operating room productivity. The significant uncertainty associated with surgery duration renders scheduling of surgical operation a challenging task. This paper proposes a novel computational stochastic model to optimize scheduling of surgeries with uncertain durations. The model considers various surgical operation co...
متن کامل